y 1 = 4. Titik (4,8) maka : x 2 = 4 dan. y 2 = 8. Nilai dari masing-masing x dan y dimasukkan ke dalam persamaan diatas. Sehingga menjadi : Jadi persamaan garis yang melewati titik (2,4) dan (4,8) adalah 2y - 4x = 0. Atau bisa disederhanakan lagi dengan membagi 2 semuanya, sehingga menjadi : y - 2x = 0.
Teksvideo. jika terdapat soal seperti ini kita harus mengetahui langkah-langkah yang harus kita lakukan yang pertama adalah mencari gradien persamaan garis yang melalui dua titik dengan rumus M = Y 2 min y 1 per X2 Min X1 setelah kita mendapatkan M1 langkah selanjutnya adalah mencari M2 karena di soal diketahui sejajar maka M1 akan = M2
TitikA(5, −4), B(2, −8) dan C(k, 12) berada di garis lurus yang sama. b. Titik P berada di sumbu-X sedemikian sehingga AP = BP, (i) tentukan koordinat titik .
PersamaanGaris Lurus Pada postingan sebelumnya tentang cara menentukan gradien garis yang melalui dua titik, telah disinggung bahwa gradien garis yang melalui titik (x1, y1) dan (x2, y2) dapat dirumuskan dengan m = (y2 - y1)/ (x2 - x1). Sekarang bagaimana cara menentukan persamaan garis yang melalui dua titik (x1, y1) dan (x2, y2)?
Jadigradien garis 2x + 3y = 1 adalah -2/3, karena sejajar maka persamaan garis yang melalui titik B (-4, 0) yakni: y - yB = m (x - xB) y - 0 = (-2/3). (x - (-4)) y . 3 = (-2/3) (x + 4) . 3
. 32 54 456 222 343 458 297 30

persamaan garis yang melalui 2 titik